
In this way, a comparative analysis of the given experiment for samples from elec- 
trolytic and carbonyl nickel powders shows that adsorption layers on the surface of par- 
ticles of the resulting dispersed layer not only determine the potential barrier of elec- 
tron emission from the metal [4, 7] but also while passing to the gas phase (desorbing) 
may by their own pressure separate particles, thereby increasing the same gaps which are 
barriers for electrons tunneling in the direction of the field. 

The results obtained must, obviously, refine the concepts about interparticle con- 
tacts and will serve to further the development of the physicomathematical model of 
transport in a dispersed medium, in particular the one proposed in [8]. 
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IMPROVING THE EFFICIENCY OF ACOUSTIC FOAM SUPPRESSION 

V. G. Nevolin UDC 532.501.34:541.182:622.765.066 

The loss of efficiency of acoustic foam suppression at higher sound frequen- 
cies can be attributed to stabilization of the liquid foam films by high- 
frequency vibrations. 

Tests on the ultrasonic breakdown of flotation foam on copper concentrate have been 
described previously [i]. We have used the results of these tests to map isographs of the 
efficiency (degree) of foam suppression by ultrasound at various amplitudes and frequencies 
(see Fig. i). The figure indicates that the frequency of ultrasound at a fixed amplitude 
must be lowered in order to increase the degree of foam suppression. An increase in the 
frequency, on the other hand, tends to lower the degree of acoustic foam suppression. It 
seems to us that this effect is attributable to stabilization of the foam by the vibration 
input. 

We now seek to demonstrate this fact. We model the foam by a viscous incompressible 
fluid layer of infinite extent with free boundaries [2], which corresponds to the case of 
a coarsely disperse foam, where the characteristic dimensions of the foam films are much 
greater than their thicknesses. We model the process of acoustic foam suppression as an in- 
stability of the plane surfaces of an infinite viscous fluid film of thickness h, which 
is surrounded by a gas (inviscid fluid) and executes small vibrations along the vertical 
axis (z-axis)~with a frequency m and an amplitude a (a ~ i) according to the law a cos mt. 
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Fig. I. Isographs of the foam suppression 
efficiency at various ultrasonic inten- 
sities I (mV) and frequencies m/2~ (kHz). 
i) 93% suppression; 2) 94% suppression. 

This representation corresponds to the case of foam breakdown by sound with a wavelength 
much greater than the characteristic dimensions of the fluid foam film. Allowing for the 
fact that the scale of the foam channels does not exceed 1 cm, we obtain an upper limit 
for the acoustic frequency: The frequency of the acoustic signal must not exceed 34 kHz. 
The vibration model is then a realistic model of the acoustic breakdown of foam. Foam sup- 
pression by this mechanism takes place in the case of small acoustic pressures, i.e., before 
the onset of shock breakdown. 

i. We carry out the analysis in Cartesian coordinates, where the xy plane coincides 
with the undisturbed upper interface. The lower interface corresponds to the vertical co- 
ordinate z = -h. The fluid is stationary in a moving coordinate system, and the effective 
free-fall acceleration is 

g (t) = (1 - -  b cos  ~t)  g, g = (0, O, - -  g),  b - -  a ~ 2 / g  ~ 1. 

Mechanical equilibrium is possible in the given system (liquid-gas) and is described 
by the equations 

vo~ = (uo~, %~, Wo~) = O, ~ j  = O, 

= I - - w g ( t )  z a t  Z ~ 0 ,  

fl~ [102~(t) h - -  p l~  (t) (h ~- z) a t  z ~ - - h ,  ( 1 )  

P2 = - - P 2 g ( t )  z a t  - - h ~ z ~ 0 .  

Here j = i corresponds to the upper interface, and j = 2 corresponds to the lower inter- 
face. The fluid labeled i = 1 occupies the half-spaces z ~ 0 and z ~ -h, and the fluid 
labeled i = 2 occupies the layer -h K z K 0. 

We consider the stability of the equilibrium (i) in the presence of infinitesimally 
small perturbations. The system of equations for the perturbations is written in the form 
[3] 

dv l /O t  ~ --~31~VPl,  VVi = O, i ~ 1, 2, Ova~dr = - - ~ l V p  ~ @ A-1V~V~, 
(2) 

where ~i ~ 9i/(91 + Pz); A ~--- [o~3/v'~g(9~ @ 9e)a] 1/4 

At the interface, assuming that the displacements Cj of the surfaces from the equilib- 
rium position are small, we have [3] 

at z=O : 

p~ - -  p~ = [[3~ - -  [3~ - -  Ax - -  ([~ - -  [~) b cos .Qt] ~ + 2 A - ~ O w 6 0 z ;  ( 3 )  

at Z ----- --H(H~-h/[0~/(pl+ P2) o O] 1/2) : 

0~2/0t = w~, wl = w2, AlW2 = OZw2/Oz 2, 
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Pl - -  P2 = [ ~  - -  ~.~ + A~ - -  (~1 - -  132) b cos -qtl ~ - -  2A-~Ow.JOz, 
(4) 

A~O~/Ox2 + 02/Og ~, ~ -~ / [g~(Pl  + P~)/~]'/~ 
a t [ g [ - - ~ o o :  

w l - + O .  ( 5 )  

S o l v i n g  t h e  s y s t e m  o f  e q u a t i o n s  ( 2 )  s u b j e c t  t o  c o n d i t i o n s  ( 3 ) - ( 5 )  b y  m e a n s  o f  t h e  
Laplace transform with respect to time and the Fourier transform with respect to the co- 
ordinates x and y and assuming that the viscosity of the fluid is small, we obtain a sys- 
tem of equations for the displacements of the surfaces from the equilibrium position for 
the case of a dense thin film, when the conditions kH ~ 1 and Pl ~ P2 (or, equivalently, 
~l ~ i, $2 ~ i) hold [4]: 

dZ$~/dt z + 28d$~/dt-- (dZ~,,/dt ~ + 26d~/dt) + [Q~ + (--  1)tq cos Qt] ~ = O, ( 6 )  

where 

02 2 l, n 1, 2; l ~ n ;  ~ . o l - - - - ~ [ k 3 - - ( - - 1 ) l k l k H ;  k~--k ~ = = ~ + k ~ ;  k = (k~, k~); q-----bHkZ; 8-----2k~/A �9 

Since we are investigating the case in which the characteristic dimensions of the foam 
channels are not greater than ~i cm, we find that k >> i, i.e., ~01 2 = ~0 2 , k4H. 

Making a linear transformation of the form 

~1 = (~1 + ~2)/2, ~2 = ( ~  - -  ~ ) / 2 ,  

we obtain the equations for $i 

~ - -  (q~2 cos ~t)/Q~, dZ~2/dt2 + 28d~2/dt q- 
(7) 

§ (1/2e~)  (29-~ - -  q2 _ q2 cos 2fit)  ~2 = O. 

This system is a set of Mathieu equations [5]. Solving them for the case of small q, i.e., 
for q2 ~ 2~04, we find that surface waves are excited on the film if 

b ~ b,~ = 4 (~3/A)'"~ /k,H = 4~/A1/2H 3/4, ( 8 )  

where the wave number k* of the most easily excited surface mode is given by the relation 

~ = k ~ H  : ~ .  ( 9 )  

In the case of finite q the surface wave excitation condition is written 

b ~ b,2 = 2~zl'Hk~ = 2~/H I /2, (i0) 

since k* is determined from Eq. (9). 

Surface waves are not excited for b < b, I (or for b < b,2). 

Equations (6) and (7) were derived for the case in which the direction of incidence 
of the sound wave or the direction of polarization of the vibrations is perpendicular to 
the liquid foam film. In reality, however, the foam channels have arbitrary orientations. 
The right-hand sides of Eqs. (6) and (7) acquire driving-force terms when such orientation 
of the liquid films is taken into account. However, it has been shown [6] that the solu- 
tion of an inhomogeneous second-order linear differential equation with periodic coeffi- 
cients and with a periodic function of the same period on the right-hand side is unstable 
if and only if the solution of the corresponding homogeneous equation is unstable. To sim- 
plify matters, therefore, we discuss the homogeneous equation, i.e., the case of perpen- 
dicular incidence of sound or perpendicular polarization of the vibrations. 

2. The onset of surface waves can lead directly to breakdown of the liquid foam film 
or accelerated dehydration (thinning) of the film and thus to its eventual breakdown, for 
example, as a result of van der Waals instability. Taking van der Waals compression (at- 
traction) into account, we can rewrite the expression for the natural frequency of the sur- 
face waves in the form [7] 
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Fig. 2. Stability diagram of liquid 
foam films (the domain of instability 
is shown hatched). 

~g+~_----(~3--Bk)~H, (11) 

where B ~ (laU/Shl - lsu0/Shl)/p=g, and U and U 0 are the potentials of the van der Waals 
forces and repulsion of the boundaries. 

It follows from Eqs. (7) and (ii) that the acoustic excitation (vibrations) respon- 
sible for the generation of surface waves induces film breakdown as long as the film is 
sufficiently thick (so that the van der Waals forces are small), i.e., if k ~ B I/2. In 
the case of thin films, however, i.e., when k < B I/2, not only are vibrations (sound) in- 
capable of breaking down the liquid film, they can even have the converse effect of stabil- 
izing it. As a result, foam suppression is negated. This phenomenon is attributable to 
the dynamic stabilization effect [8, 9]. 

Indeed, the natural surface wave frequency ~02 changes sign for k < B I/2, i.e., for 
~02 = -Bk2H(I - k2/B) < 0. Also, it follows from Eq. (7) that the liquid film is stable 
if q2/2~02 - ~02 ~ 0, i.e., for 

b~b.a - :  21/2B + o (l/B). (12 )  

If b < b,3, the film breaks down as a result of van der Waals compression. 

Thus, the liquid foam film is not broken down if the signal amplitude b satisfies the 
inequalities 

b,~ (or b,~)>~b>~b,~. (13)  

Figure 2 gives a schematic representation of the domains of foam stability and in- 
stability. Line 1 corresponds to van der Waals instability, and line 2 to parametric in- 
stability of the foam films. Foam suppression takes place if the amplitude of the acoustic 
(vibration) signal lies below line 1 or above line 2. The foam does not break down if the 
amplitude of the signal satisfies the relation (13) and the excitation frequency ~ is high- 
er than the critical value ~* determined from the condition b,1 = b,~ or b,2 = b,~, i.e., 
if it lies in the hatched domain. This clarifies the results of [I], in which the foam 
suppression efficiency was found to diminish with an increase in the acoustic frequency. 
This is because the threshold of surface wave excitation (threshold of breakdown Of the 
liquid films) and the attenuation of sound in the interior of the foam increase with an 
increase in the acoustic frequency. As a result, the amplitude of insonification of liquid 
films close to the sound source still falls within the domain of instability, and the foam 
breaks down, but the deeper interior layers of the foam do not break down, because the in- 
sonification amplitude lies in the domain of stability of the foam films. 

Consequently, in order to improve the efficiency of foam suppression, the intensity 
of the sound (vibration) input must be increased if the frequency is raised, or in the case 
of a fixed excitation amplitude the input frequency must be lowered (see Fig. 2) in such 
a way that the amplitude of the sound wave (vibrations) in the interior of the foam will 
remain inside the domain of parametric instability. 

Here we have discussed only the domain of parametric instability, because it is only 
practical to insonify a stable foam, i.e., a foam whose film thicknesses do not exceed 
2~/BI/2 

NOTATION 

~, v, coefficients of surface tension and kinematic viscosity; ~, E, angular and 
dimensionless modulation frequencies; ~0, natural frequency of surface waves; :~,, critical 
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vibration frequency; ~0j, ~j, displacements of the j-th surface from equilibrium position; 
Pi, ~i, dimensional and-dimensionless densities of i-th fluid; 6, dissipation parameter; 
$i, $2, amplitude of interface vibrations; a modulation amplitude; b, q, dimensionless 
modulation amplitudes; g, free-fall acceleration; x, y, z, Cartesian coordinates; h, H, 
dimensional and dimensionless thicknesses of liquid film; Pl, P2, pressures; v0~,v = (u, 
v, w), fluid velocity vectors; t, time; V, gradient operator; i, l, n, indices; j, inter- 
face-numbering index; A, analog of Reynolds number; k, wave number, k = (kx, ky), wave 
vector; b,, critical modulation amplitude; k,, critical wave number; U0, U, potentials of 
repulsive and van der Waals compressive forces. 

i. 

. 

3. 

. 

5. 
6. 
7. 
8. 
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SURFACE FLOW WITH DISCRETE SINKS 

A. V. Shchukin and R. S. Agachev UDC 621.438:542.46:532.546 

Measurements have been made on the coefficient of friction, the pressure, and 
the turbulence at the surface involving discrete sinks provided by a trans- 
verse slot and a hole. 

Channel inlet sections are frequently inclined to the surfaces in tangential cooling- 
air supply to convective film cooling systems for gas turbines (Fig. la) or else may be 
perpendicular to the latter (Fig. Ib). In the first case, the pressure loss in the supply 
can be calculated from data for the inlet sections of wind tunnels [i] and for aerospace 
vehicle surfaces [2], but in the second, the scope is more restricted, as there have been 
only isolated studies in the literature on the overall characteristics [3] or an analysis 
based on one-dimensional theory [4], where formulas were derived for hole flow coefficients. 
Pressure coefficients behind holes have been derived [5] and the flows have been visualized 
when the diameter of such a hole is comparable with the width of the supply channel. Bound- 
ary-layer theory applied for vanishing viscosity [6] has given the friction function, but 
it applies only for distributed porous sinks. 

Here we examine flow around a surface having a transverse slot or hole through which 
the air is partly removed (Fig. Ic). We consider conditions corresponding to inlet chan- 
nels in gas-turbine cooling systems, where the sink parameter m s < i. 

The experiments were performed with a single slot and single hole, on the assumption 
that the effects from preceding and subsequent holes or slots would be absent. The chan- 
nel height H was also taken to be substantially larger than the slot width s for hole 
diameter d. 
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